Nabla Fractional Derivative and Fractional Integral on Time Scales

نویسندگان

چکیده

In this paper, we introduce the nabla fractional derivative and integral on time scales in Riemann-Liouville sense. We also Gr\"unwald-Letnikov Some of basic properties theorems related to calculus are discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nabla discrete fractional calculus and nabla inequalities

Here we define a Caputo like discrete nabla fractional difference and we produce discrete nabla fractional Taylor formulae for the first time. We estimate their remaiders. Then we derive related discrete nabla fractional Opial, Ostrowski, Poincaré and Sobolev type inequalities .

متن کامل

On the Definitions of Nabla Fractional Operators

and Applied Analysis 3 Definition 2.2. Let ρ t t − 1 be the backward jump operator. Then i the nabla left fractional sum of order α > 0 starting from a is defined by ∇−α a f t 1 Γ α t ∑ s a 1 ( t − ρ s α−1f s , t ∈ Na 1 2.4 ii the nabla right fractional sum of order α > 0 ending at b is defined by b∇−αf t 1 Γ α b−1 ∑ s t ( s − ρ t α−1f s 1 Γ α b−1 ∑ s t σ s − t α−1f s , t ∈b−1 N. 2.5 We want to...

متن کامل

Positive time fractional derivative

In mathematical modeling of the non-squared frequency-dependent diffusions, also known as the anomalous diffusions, it is desirable to have a positive real Fourier transform for the time derivative of arbitrary fractional or odd integer order. The Fourier transform of the fractional time derivative in the Riemann-Liouville and Caputo senses, however, involves a complex power function of the fra...

متن کامل

Fractional Derivative as Fractional Power of Derivative

Definitions of fractional derivatives as fractional powers of derivative operators are suggested. The Taylor series and Fourier series are used to define fractional power of self-adjoint derivative operator. The Fourier integrals and Weyl quantization procedure are applied to derive the definition of fractional derivative operator. Fractional generalization of concept of stability is considered.

متن کامل

Space-time Fractional Derivative Operators

Evolution equations for anomalous diffusion employ fractional derivatives in space and time. Linkage between the space-time variables leads to a new type of fractional derivative operator. This paper develops the mathematical foundations of those operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2021

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms10040317